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Abstract  

In this paper we give an elementary discussion of the localization concept of relativistic 
particles. We prove the so-called Hegerfeldt theorem, which says that localization of a 
one-particle state in a finite space(-time) volume is inconsistent with causality, in two 
different ways. The proofs are elementary and use on the one hand the same type of 
arguments as used in the proof of the well-known theorem of Reeh-Schlieder and on the 
other a remark due to Botchers. 

1. Introduction 

It is weU known that a careful analysis of the inhomogenous Lorentz group 
(Wigner, 1939) has given rise to a very useful classification of relativistic 
particles. The corresponding relativistic particle states are then supposed to 
transform according to irreducible representations of this fundamental  group, 
if one introduces the restrictions 

m > 0 (1.1) 

E >_- 0 (1.2) 

where m is the particle mass and 

E -= (m 2 + p2)1/2 (1.3) 

is the corresponding relativistic energy. 
On the empirical level of elementary particle physics we have, however, 

also a notion of "localizability" of particles. In nonrelativistic quantum 
mechanics, e.g., this concept is built  into the theory on a very fundamental  
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level 1. It is associated with the "canonical" quantization as expressed by the 
commutation relation 

[x, p] c ih (1.4) 

where x is the nonrelativistic position operator and p the corresponding 
generator of translations in space. This commutation relation emerges in a 
very natural way when one introduces transitive systems of  imprimitivities 
(in the sense of Mackey, 1968) as a representation of the fact that the particle 
can be localized in the physical space (Jauch, 1968). Indeed, this concept is 
so fundamental that an irreducible system of imprimitivities can be regarded 
as a definition of  an "elementary particle" (Jauch, 1968). The extension of  
the concept of localizability of elementary particles to relativistic quantum 
mechanics and field theory, and the construction of the corresponding 
observable (von Neumann, 1932)-the position operator-has been a topic 
for fundamental research since the original paper by T. D. Newton and 
E. P. Wigner in t 949 on "Localized States for Elementary Systems." In this 
work we have no intention of discussing the historical evolution of the con- 
cept of localizability (for a historical review of the problem of localizability, 
see Kalnay, 1971), but instead we shall discuss the concept in connection 
with that of primitive causality. In doing this we shall state a recent tKeorem 
due to G. C. Hegerfeldt (1974) which, essentially, says the localization within 
a finite space(-time) region of  a relativistic particle, in the sense described 
above, is inconsistent with causality. We shah give another type of proof of 
the Hegerfeldt theorem and also mention how it is possible to arrive at the 
same result in the more rigorous formalism of the localization concept, as 
developed by J. M. Jauch & C. Piron (1967) and A. S. Wightman (1962). 
We remark, in passing, that the nonexistence of a covariant localization con- 
cept already was mentioned in the paper by A. S. Wightman cited above. 

2. Localization o f  a Nonretativistic Particle 

Before entering into the relativistic consideration we shall consider some 
arguments, initially discussed by D. I. Blokhintsev (1968) some time ago, 
concerning the quantum mechanical description of a particle propagating in, 
e.g., a bubble chamber. When one is considering the very beautiful pictures 
from the current bubble chamber experiments (Kalmus, 1973), in high energy 
particle physics, one cannot avoid the question concerning the localization 
of the corresponding particle and its relation to the bubble chamber 
trajectory. Indeed, it is a fundamental assumption that the trajectory is 
associated with the particle in such a way that a kinematic analysis is possible 
(i.e., the trajectory is associated with a relativistic particle). In the experiments 
mentioned, the tracks are, of course, due to some complicated ionization 

I In classical mechanics the concept of localizabflity is hidden in the most elementary 
concepts-this could be a reason why there does not exist any detailed analysis at all 
of this concept in classical physics. 
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process, but let us now extract the idea of a particle having a certain trajectory 
which also generates the corresponding bubble chamber trajectory (if the 
particle is charged). So we assume that we have a sequence of space-time 
points like that illustrated in Figure 1, which we now also identify with a 
bubble chamber trajectory. Each such space-time point (xk, tk), where k 
belongs to some appropiate index set, is associated with a localization of the 
propagating particle within a linear dimension of the order 2xxk (a quantity 
which we will make tend to zero). This means that at time t = tk the particle 
is localized within a space region Vk defined by 

G - { x l x ~  - 1 , 5 x ~  < x <= xk + ½axk} (2.i) 

Let us now investigate what quantum mechanics, in Feynman's path integral 
formulation (Feynman, 1949; see also Feynman & Hibbs, 1965, for a more 
detailed account), says about a trajectory such as that in Figure 1. Formally, 
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Figure 1-A model of a bubble chamber trajectory. 
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the probability P(xo, to; xl, t l ; . . . ;  Xn, tn) for such a trajectory can be com- 
puted in the following way: 

P(Xo, to;x1, tl ; . . .; Xn, tn) = P(xn, tn; Xn-1, tn- , )P(xn-1,  tn-1; Xn-2,  tn -  2 ) 

• " " P(xl, tl ; xo, to) AXl AX2 " " " AXn_I (2.2) 

where the conditional probabilities P(xm, tm ; Xm-1, tm -1) are given by 

P(xm , tm; Xm-1, tm -x ) = G(xm , tm ; Xm -a, tm -1)G*(xm , tm; Xm -1, tm -1) 
(2.3) 

In this expression G(xm, tm;Xm-1,  tm-1)  is the causal Green's function for 
the free Schr6dinger equation, i.e., 

G(x, t; Xm-1, t) = 8(x - Xm-1) (2.4) 

and 

G(x, t; Xm -1, t in- l )  = 0 if t < tin-1 (2.5) 

We now also assume that the particle is completely free between the localization 
points (xk, tg). We then obtain the following state function for (x, t) para- 
meters such that xg < x  <xk+l  and tk < t < tk+l : 

i [ m (x_-xx)  2 ] 
G(x, t ;xk,  tg) - -~  exp / 2h t -  tk ] (2.6) 

such that 

ih 3G(x, t; xg, tk) h 2 0 2 G(x, t; xg, tg) (2.7) 
Ot 2m 3x 2 

and where N is a normalization which will be specified below. In order to find 
the mean energy of the "Markov chain" as described in Figure 1, we consider 
one fixed localization point, xk, and let the point xg+l tend to infinity (we 
consider, for simplicity, a one-dimensional propagation). We then notice that 
the state function (2.6) is nonintegrable [in the L2(R) sense] and therefore 
we introduce a regularization G~ of G by performing an analytic continuation 
in the mass parameter, i.e., m -* rn + i6: 

1 [ m + i ~ ( x - x k )  2] 
G~(x , t ; xk , t k )=- -~exp  i ~ t--t-kk J (2.8) 

where we now introduce 

2zrih(t - tk )]l/2 (2.9) 

i.e., 

[ (2~rmh At)2 + (2rr6Ath)2 ]1/2 
N~N~ = [  ~ +6-~)2 ] (2.9') 
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which is perfectly regular when we take the limit ~ -~ O. This choice of the 
normalization constant corresponds to the criteria 

lira lira Gs(x, t;xk, tk) = 6(X -- Xk) (2.10 
6 ~ 0  A t-'* 0 

where 

At =-- t -- ttr (2.11) 

With this choice of normalization we know (Feynman, 1949; Feynmann & 
Hibbs, 1965) that the function G~ above is a solution of the Schr6dinger 
equation (2.5), under the condition that At is sufficiently small. This means 
that we can calculate the mean energy of the particle by using the following 
standard formula in quantum mechanics: 

(E)~ = G~(x,t;xk,tk) 2m ~-x2 G~(x,t;Xk,tk)dx/ 
Xk 

f G~(x,t;xk, tk)Gs(x,t;xk, tk)dx (2.t2) 

Xk 

Elementary calculations, using Gaussian integrals (see Appendix A), give us 
then the following result 

(E) 8 = (h/4mAt) (m2/~ + 6) (2.13) 

i.e., 

(E)8 -~ hm/46At when ~ -~ 0 (2.14) 

Hence we see that the mean energy of the particle will be infinite if we 
have a pointlike localization at one space-time point. It turns out that the 
same argument for a finite number of localization points gives the same type 
of divergent mean energy (Appendix B). This result has also been obtained by 
D. I. Blokhintsev (1968) some time ago. It is interesting to notice that for an 
arbitrary number of localization regions, consisting of finite intervals, 6-function 
type of singularities cannot be avoided (Appendix C), i.e., the localization 
regions must contain "smooth tails." 

For a finite number of localization points we must then, in general, intro- 
duce a "smearing" of the G(x, t; Xk, &) function, and let us now study, for 
the sake of completeness, a simple example. We shall consider the effect of  a 
trivial smearing, at the time t = &, with a Gaussian distribution. The state 
function at times t > & can then be calculated according to the formula 
(Feynman, 1949; Feynman & Hibbs, 1965) 

~(x, t) = f dx'N' exp (-x'2/2a2)G(x, t;x', tk) (2.t5) 
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where N '  is a normalization constant such that 
e o  

j dx • (x, t) ~*(x,  t) = 1 Vt  > tk (2.16) 
_ _ o o  

Since all integrands in the expression for the mean energy are of a Gaussian 
type, we can find after some elementary calculations that 

(E) = (h2 /Zm) (1/2a 2) (2.17) 

which is in no way surprising and, of course, a well-known result in quantum 
mechanics. 

3. Localization and Causality 

By using heuristic arguments we have shown that a pointlike localization 
of an elementary particle can introduce a divergent mean energy. We noticed, 
furthermore, that a "smearing" of the free particle state function changed 
this fact drastically. We showed this explicitly for the case when the smearing 
function had its support on the whole of the real line. A finite energy will also, 
of course, emerge in the case with a smearing function which has a compact 
support, if the corresponding function is sufficiently smooth (e.g., C °O functions 
with compact support). 

Going over to the relativistic domain, we now ask ourselves the question if 
it is possible to localize a particle in a finite space(-time) region. We shall see 
below that this is impossible if we insist that the relativistic theory should be 
consistent with a causality condition. This is the so-called Hegerfeldt (1974) 
theorem, and in order to derive this result we need some definitions. We 
introduce first of all a definition concerning the meaning of the concept of 
localization of a particle within a finite space region. 

Definition I: A one-particle state, ~Xo, is said to be localized in a 
space volume Vxo at the time xo, if the probability of finding the 
particle in Vxo is unity. It is said to be not in Vxo at the time xo if 
the corresponding probability of finding the particle in Vxo is zero. 

By assumption we then have an operator E(Vxo) associated with the volume 
Vxo in such a way that its expectation value in the state 4~Xo gives the pro- 
bability p(Vxo) of finding the particle in the corresponding volume, i.e., 

p( Vxo) = (¢.0, E(Vxo) ~o) (3.1) 
We now assume (i) that the states of the particle under consideration 

transform according to an irreducible representation o f  the Poineare'group, 
and (ii) a spectral condition i.e., the generator of time translations has a 
spectrum which is bounded from below. 

Let us consider the localized one-particle state q~Xo at a later time x~ > xo. 
The corresponding localization volume will be denoted by the symbol Vx'o. 
Since the particle necessarily has a finite propagation velocity (< c) the 
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localization volume Vx' o must be contained in the causal future cone of  Vx o , 
as illustrated in Figure 2. We now perform a spacelike transformation of  the 
localized one-particle state ~x; to the localized state ~x o , which describes a 
particle localized in a volume Vx'o. We assume that the volumes Vxo and Vx'o 
are totally spacelike separated, as illustrated in Figure 2. A notation of  causality 
can then be introduced according to (Hegerfeldt, 1974) 
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Figure 2-Supports of the localized one particle states. 
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Definition 1I." Suppose that a one-particle state at t ime x0,  Cx0, 
is localized in a volume Vxo. Then there exists a spacelike vector x'  
such that at the t ime xb > xo the particle, when translated with the 
vector x ' ,  is not in the volume Vx'o. 

It is then a remarkable fact that  localization of  a particle in a relativistic theory 
is incompatible with this concept o f  causality. Indeed we have the following 
theorem due to Hegerfeldt (1974) which we are going to prove in somewhat 
different setting: 

Theorem: In a relativistic theory of  particles, there is no one-particle 
state localized in a finite space region 2 satisfying the causality 
condition in Definition II. 

Proof." Let us introduce the following four-vector 2~ with components 

~k = x~ k E (1 ,  2, 3} 

20 =xb 

Using the transformation properties of  the one-particle states under space and 
time translations we have that 

^s, s (3.2) % = u(2, ~ ) % 

where we suppress a summation over spin or helicity indicies (we use the 
notation defined in Streater & Wightman, 1964). From the assumption of  
causality it now follows that  the relativistic invariant scalar product between 
the one-particle states q~x' o and ~xo is zero, i.e., 

($Xo ,$X 'o)=fdg2m(p)<$Soipxp l  [ U(oT, ~ ) lq~o > 

= f d~2m(p) exp(ip~2 :~) I~,~ o (P)12 = 0 (3.3) 

Here we have introduced a relativistic invariant measure on the one-particle 
mass hyperbotoid (see Appendix D, where we give some calculations for the 
case s = 0). Let us now define the following holomorphic funct ion/ ( . ) :  

I(z) = f dg2m(p) exp(ipt, ztZ) l ~xo (p)12 (3.4) 

where 

z E r = (z Iz =2 + iy, where 2 is spacelike a m y  ~ V + ,  
the positive forward lightcone} 

From the spectral condition we see that 

i ( z )  < = Vz @ r (3.5) 

2 From the proof it will be clear that the theorem is valid also for a finite space-time 
region. 
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and, moreover, we have by the causality assumption the following boundary 
value: 

lim I(z) = f dam(p) exp(ip~U) [ CSo(P) 12 = 0 (3.6) 
Imz-~ 0 

By construction we thus have a holomorphic function I(.) defined on a set 

N = ( R  4 + i ~  nO 

where cC is a convex cone and the open set (PC C 4 contains a real enviroment 
E such that 

lim I(x + iy) = 0 V x ~ E (3.7) 
y ~ O  

A generalization of the classical edge of the wedge theorem 3 then implies that 

I(z) = 0 V z E ,¢) (3.8) 

and from this we conclude that 

(¢xo, 4~x;,) = 0 V x~ (3.9) 

From this equation we, trivially, realize that 

~o  =0 

and hence there does not exist any nontriviat relativistic one-particle state 
that is localized in a finite space(-time) volume under the assumption of 
causality, as defined above. 

4. Systems of lmprimitivities and Localization of  Elementary Particles 

In the last section we introduced an operator E(V) (we suppress the time 
dependence) such that the expectation defined by equation (3.1) gives the 
probability of finding the particle, corresponding to the one-particle state ~, 
in the volume K If this probability is equal to unity We see, by using the 
Cauchy-Schwartz inequality (Yosida, 1974), that 

E(V) (p = ~ (4.1) 

i.e., E(V) becomes a projection operator. 
In the Jauch-Piron approach to quantum mechanics (Jauch, 1968; Piron, 

1972), the set of propositions of a physical system constitute a complete 
orthocomplemented lattice. Under very general conditions this propositional 
system can be represented (Piron, 1964) by the lattice of all closed subspaces 
of a Hilbert space, i.e., by projectors. Localization of an elementary particle 
then corresponds to a certain structure of the proposition system. Indeed, the 
proposition system must contain, almost trivially, propositions that answer 
the question whether the particle is or is not in a certain region in space. 

3 Theorem 2-17 in Streater & Wightman (1964). 
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In the Wightman (1962) and Jauch-Piron (1967) approach to the question 
of tocalizabilffy of an elementary particle, we have a proposition associated 
with each space volume corresponding to the particle localization volume (we 
consider the set of propositions at a fixed time and we will work in the 
Heisenberg picture). More precisely we assume that (Wightman, 1962) 

(i) For every Borel set, V C R 3, there exists a projection E(V)E  B(o~), 
i.e., a bounded linear operator on the Hilbert space, ]t ~, of physical 
states. The expectation value of E(V) gives the probability of finding 
the particle in the volume V. 

(ii) For every pair of Borel sets V1 and V2 CR 3 we have that 

E(Vi ~ I12)=E(V1)E(V2) [=E(V2)E(VI)] (4.2) 

i.e., compatible propositions for all Borel sets. 

(iii) For every pair of Borel sets Va and V2 CR 3 we have that 

E(V1 tA V2)= E(V1) + E(V2) - E(V1 (~.~V2) (4.3) 

which corresponds to the statement that the set of states which are 
localized in the volume 111 tA V2 is the closed linear manifold 
spanned by localized states in the volumes V1 and V2, respectively. 

(iv) We have E(R 3) = 1 (the identity operator) (4.4) 

i.e., the probability must be unity of finding the particle somewhere 
in the configuration space. 

(v) For every Borel set V CR 3 we have that 

E(R V + a) = U(a, R)E(V)U -1 (a, R) (4.5) 

which gives the transformation properties of the projectors under 
the Euclidean group of Motions. R is a rotation and the vector a 
corresponds to a translation. U(a, R) is the corresponding unitary 
operator whose action on the physical states induces a rotation R 
and a translation with the vector a. 

In the sense of Mackey (1968) the formal structure (i)-(v) defines a system of  
imprimitivity for the representation U(a, R) of the Euclidean group with 
base R 3. 

The importance of this formulation of localization rests on the fact that, 
if we make the following definition of an elementary particle (Jauch, 1968): 

Definition 111: A localizable system with the system of imprimitivity 

{E(V), U(a, R)} 

describes an elementary particle if the system of imprimitivity is 
irreducible, i.e., the commutant 

(E(V), u(a, R))' 
is a multiple of the identity operator, 



LOCALIZATION OF ELEMENTARY PARTICLES 223 

then the so-called imprimitivity theorem o f  Mackey gives a complete classifi- 
cation of all "elementary particles" and thereby a determination of all 
localizable systems in nature. 

The mapping V-+ E(V) with the properties (i)-(v) also defines a spectral 
measure and hence we also have, by the spectral theorem (Yosida, 1974), a 
position operator. It now turns out that the photon is not localizable in this 
sense (Wightman, 1962) but the formal structure (i)-(v) can be generalized in 
the following sense (Jauch & Piron, 1967): 

(i') For every Borel set V C R  3 we associate a projection E(V) in the 
same way as in (i). 

(ii') E(R 3) = 1 and E(cb) = 0 (4.6) 

where q~ denotes the empty set. 

(iii') For every pair of disjoint sets V1 and V2 CR 3 we have that 

E(V1)IE(V2) (4.7) 

where the symbol I denotes disjoint projectors (the corresponding 
closed subspaces of the Hilbert space ~ are disjoint), 

(iv') For every pair of Borel sets V1 and Vz CR 3 the following 
relations holds: 

E(V1 n V2) = stronglimit [E(V1)E(V2)] n (4.8) 
n ----> ~ 

(v') As before. 

This generalization has been constructed in order to describe localization of 
massless particles with spin s 4= 0 (e.g., the photon) (Amrein, 1969), and it 
defines ageneralized system ofimprimitivities. In this case we do not have a 
relation of the type defined by equation (4.2), i.e., the projectors are not in 
general commutative. A sufficient and necessary condition can now be given 
which reduces the system (i')-(v') to the system (i)-(v) (Jauch & Piron, 1967): 

E(V) + E(V - R 3) = 1 V Borel set V C R 3 (4.9) 

We shall now see that it is possible to give another type of proof of the 
Hegerfeldt theorem, discussed above, in this abstract setting of localizability 
of elementary particles. 

As in Figure 2 we consider the localization of the particle on a hyperplane 
with fixed time xo. Furthermore we consider the propositions corresponding 
to (i) the particle being localized in the volume Vxo at time xo and (ii) the 
particle being in the volume KG, the spacelike translated volume of Vxo, as 
before, where xb > xo. We denote the corresponding projectors by the 
symbols E(V~,) and E((Zx'o). According to the assumption of causality we 
have that these projectors are disjoint, i.e., 

E(Vx.) I E(Vx'o) (4.10) 
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Moreover, they commute because the volumes are spacelike separated. 
Let us now assume that the time evolution can be unitarily implemented 

in the sense that  

Ex'o - E(Vx'o) = U(x'o)EU-l(Xo) (4.11) 

where E - E(Vxo) and where we, without loss of  generality, have put  xo = O. 
Let us also introduce the notation Fx o -E(fZxo) and we see that 

EFx'o = FxoE (4.12) 

which is true for lx~ [ < I ,  if the [ x ' l  is sufficiently large. To proceed further 
we now notice the following theorem 4 due to H. J. Borchers (1967). 

Theorem II: Assume we have a continuous representation 

R ~ t-> U(t) 

of  a one-parameter group with a semibounded spectrum. Moreover 
assume that we have two projectors E, F such that 

U(t)FU-I(t)E = EU(t)FU-I( t )  V t such that It l <  I.  

I f  we have that FE = 0 then it follows that 

U(t)FU -1 (t)E = 0 V t 

Since we assume that we have a spectral condition we see that the causality 
assumption implies that equation (40) is valid for all times x~ (xo = 0). We 
now assume that there exists a nontrivial vector, 4~o, which describes a particle 
localized in the volume Vxo at time xo.  This means that equation (4.1) is valid. 
Hence we see that 

(¢o, EU(x'o )U(x')EU -1 (x ' )V -1 (x~)¢o) 

= (qbo, U(xfo)U(x')EU -1 (x ' )U -1 (x())¢o) 
- 1  r - 1  = ( U  (xo)U (x)~)o,EU-I(x ')U-I(xb)cko)=O (4.13) 

by construction. Since E is a positive and self-adjoint we derive the following 
equation: 

EU - l ( x ' ) w  -1 (x~)$o = 0 (4.14) 

and from this we have that 

((oo, EU -1 (x')W -1 ( x ; ~ 0 )  = 0 (4.15) 

Hence we have proved that 

(q~o, U-1 (x ' )U- l (x0 )$o )  = 0 gx'o and Ix'  I sufficiently large (4.16) 

4 This proof technique, by using a theorem of Botchers, was suggested to the author by 
B. Jamewicz at a seminar in G6teborg 1975. 
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Explicitely equation (4.16) means that 

fdarn(P) I ~oS(p)l 2 exp(ip" x'  - i(p 2 + m2)l/2x'o) = 0 Vxb (4.17) 

But this equation leads to a contradiction since we now can show that 9o = 0 
either by using relativistic invariance arguments or Payley-Wiener type of 
theorems (Yosida, 1974). Hence we have once more proved that localization 
of a relativistic particle in a finite volume is inconsistent with the concept of 
causality as defined above. 

5. Conclusions 

By using a naive and unrealistic model for a particle propagating in a 
bubble chamber (Figure 1), we showed that a pointlike localization leads to a 
divergent energy. This is true also in the case when we have localization 
regions with sharp boundaries as explained in Appendix C. These results are 
of  course in complete agreement with the Heisenberg uncertainty relation 
z2ec- ZXp ~ h. The example also illustrates the relevance of  a model concerning 
measurements in the quantum domain (the reduction of wave packet is an 
essential step in constructing the state function defined by equation C4). 
In a forthcoming work we shall make a detailed analysis of  this problem in 
the context of quantum Markov processes. 

The question of localization of elementary particles was then extended to 
the relativistic domain and we gave an elementary proof of the Hegerfeldt 
theorem (in the Schr6dinger picture) saying that localization within a finite 
space(-time) region of a single particle is inconsistent with causality. The proof 
technique was based on the same type of arguments as used in the proof of 
the well-known Reeh-Schtieder theorem from 1961 (Streater & Wightman, 
1964). 

In the last section we formulated the concept of  localization in the frame- 
work of systems of imprimitivities-a specific structure on the system of 
propositions of the physical system under consideration. The use of a remark 
by Borchers was the essential step in proving the Hegerfeldt theorem in this 
setting (Heisenberg picture). 

The results of this paper confirms a statement due to Wightman (1962) 
some time ago, namely, that " . . .  a sensible notion of localizability in space- 
time does not exist." This could be interpreted in the sense that the notion 
of configuration has no consistent meaning in the microworld (Kalnag, 1973) 
as far as relativistic theories are concerned. Hence it could also indicate that 
an extension of stochastic processes on a classical configuration space 
(Skagerstam, 1975) to the relativistic domain could be impossible. In any case 
the problem calls for further analysis. 
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Appendix A 

In order to calculate the expression defined by equation (2.12) we introduce 
the following notation: 

i(m +i6) 
otk --- (A1) 

2 h ( t -  tk) 

and 

6 
/3k - - -  (A2) 

t~(t- tk) 

3'k - (N~A~)-1 (A3) 

After some elementary transformations we see that on the one hand 

* ' Gs(x', t) dx' Gs(x , t) 2m 
Xk 

and on the other 

2m 2akTk exp [--~k(X" - Xk) 2] dx '  
Xk 

+ 41k27k ; (X' -- Xe)2 exp[--k(X' -- Xk)2] dx '} 
Xk 

h 2 x/rr 2ak'I'g 2ak2"yk 
t- (14)  

2m 2 18/~/2 /3~/2 

c o  

f t) &' - vk 
x k  

where we have used the notation G(x', t) = G(x, t; x', tk ). Straightforward 
calculations then gives us the expression (2.13). 

(A5) 

Appendix B 

In Appendix A we discussed the mean energy for a particle performing a 
motion in the configuration space in the way illustrated in Figure 1. We showed 
that  the corresponding mean value of  the energy operator was divergent, when 
we had one localization point. In this Appendix we shall now investigate the 
same problem in the case of  an arbitrary finite number,  say N, of  localization 
points. What we have to do in order to find the mean energy for this case is, 
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essentially, to change the integration domain of the integrals in the expression 
(2.12) in the following way: 

x k m = k X m  X N  

Since we have the following estimate: 
X n + l  

m 6(x.-xn___) dx' 
n 27rh(t - tn) exp h ( t - t  n) ] 

x n  

2n(h~t6)v2 N exp(-x  '2) dx' < ~o 
0 

where 

(B1) 

v ~ = o (S2) 

and 

Aft= min ( t - t n )  (B3) 
o<--n <N 

I ~ l  1/2 
~= max 2OCn (B4) 

o<n <--at 
and a similar one for the expectation value 

X n + l  

G~ (x ,  t)G~ (x', t) dx' < ,,o V 6 >_- 0 (B5) 
xn 

we see, that the same type of divergence will appear as in the case with one 
localization point, because of the last integration in (B1). 

Appendix C 
In this Appendix we shall consider the path described in Figure 1 in the case 
when we have an arbitrary number of localization points. In order to describe 
the corresponding state function we introduce the following characteristic 
function XI t k, tk+l[(t), which is such that 

{ ; i f f tE[ t k ,  tk+t[ 
X[tk, tk+l[(t) = (C1) 

otherwise 

IfH(t)  is the Heaveside step function, i.e., 

H(t)=(;  ifft>=O 
otherwise 

(C2) 
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we can represent the characteristic function X, described above, in the 
following way: 

X[tk ' tk+l[(t) = H(t  - tk) -- H(t  - tk+l) (c3) 

The state function for the inifinitely extended path can then be writ ten in the 
following form: 

• ~(x, t )=  ~ Ga(x, t ;xk ,  tk)Xttk, ttc+lt(t)Xtxk, Xk+li(X) (C4) 
k 

where we use the regularized G~(x, t ; xk ,  tk) as defined by equation (2.8). In 
order to find the mean energy we have to calculate 

= f v P a ( x , t ) (  2 m a x 2 ]  

Elementary calculations then gives us that  s 

, ! ¢ v 
• ~ ( x ,  t)~8 ( x ,  t) dx 

_ o o  

(cs) 

Xk+l 02 20tkTk 
q~'(x ' ,  t) ~ xI, a (x', t) dx '  = ~]c/5 

Xk 

_ 3~/5 Axx exp( -3k  a x g  )] + t(j31/2 Axk  )) - 2a k AXk 

× ~(xk+~, O%(xk+,, t) - ½{[(~t~x) L~8(x, 0 ! 5]x=~ k 

- [(a/~x) I q~(x ,  t) I 5]X=Xk+l + 8(0)[ l 'I '~(Xk+l, t) 15 + I xI'~(xk, t) t 5] } 
(C6) 

where 
X 

I(x)- f 
o 

In the same manner we have that 

exp(-x' 5) dx' (C7) 

X k + l  

xk 
(c8) 

Here we notice that in both  equations (C6) and (C8) we have restricted the 
time parameter to the interval Ire, tk+l [, otherwise we have no contribution 

s Here we use the notation Ax k = xk+ 1 - x k. 
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at all. Collecting the result and performing the appropiate limit procedures we 
arrive at the following result: 

t - Z (h2 /2m)  ~Vk(Z~xk)3Xt,k,~k+it(t) 
lira (E)~ = lira ~- 

~--,o ~--o t Z ~',,,~,~x~ ~,,, ~,,+ ~E (t) 
k 

2rn ~ TkAx~x[ tk, tk+li(t) J 

For the case when t E Irk, tk+l [ we derive the following expression: 

(C9) 

lim (E) 8 = ½ "~m ( ~Ck'~2 + h2 6 1 
~ o  \~ t , , ]  7m (o) ~,~ (C10) 

Hence we see that the 6-function type of singularities cannot be avoided. Since 
they arise because of the sharp localization region boundaries we must, in order 
to have a finite mean energy, in general have a "smooth tail" in the localization 
regions. 

Appendix D 
In this Appendix we shall discuss the relativistic invariant scalar product in 
equation (3.3). Here we make use of a continuum normalization (in the Dirac 
bra-ket notation) 

(p lp ' )  = 83(p - p,)pO (01) 

where 

p0 = (p2 + m2)1/2 (D2) 

The scalar product between two one-particle states is then defined by the 
following expression: 

(¢, i )  = f d~2m(P)C*(p) if(p) (D3) 

where df2m(p) is a relativistic invariant measure on the one-particle mass 
hyperboloid pupU = m 2 (here we use a timelike metric as in Streater & 
Wightman, 1964): 

d~2m(p) -d3p/(p 2 + m2) I/2 (D4) 

Let us now consider the special case of a scalar particle (s = 0). It (a, A) E ~ +¢ 
then (Streater & Wightman, 1964) 

[U(a, A)$] (p) = exp(ipuaU)~(A-ip) (D5) 
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and hence we see that 

(q~xo, Sx'o) = f d~2m(P) ($x o i P) (p 1U(x, ~ ) I~bxo) 

' exp(tp~x ) (p l p') (p' t Cxo ) = f f  d~m(P)d f2m(p  )($xo iP) ' '  t~ 

= f d~2m(P) exp(ip~x ~) t~x o (P) 12 

In the case when s :# 0 one obtains a sum over spin or helicity indicies, a com. 
lication which we disregard in this paper. 
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